Bursting oscillations from a homoclinic tangency in a time delay system

A. Destexhe and P. Gaspard
University Libre de Bruxelles, CP 231, Campus Plaine, Boulevard du Triomphe, B-1050 Brussels, Belgium

Received 18 May 1992; revised manuscript received 29 November 1992; accepted for publication 11 December 1992
Communicated by A.P. Fordy

We describe a type of bursting oscillations arising in a model of reciprocally connected neurons, where a time delay has been introduced to account for synaptic and propagation delays. We show that in this system bursting oscillations appear at an infinite
\[
\begin{align*}
C_m \frac{dX}{dt} &= -g_L(X-V_L) - g_{EE}(X-V_E)F(X(t-\tau)) \\
&\quad - g_{EE}(X-V_I)F(Y(t-\tau)), \\
C_m \frac{dY}{dt} &= -g_L(Y-V_L) - g_{EI}(Y-V_E)F(X(t-\tau)) \\
&\quad - g_{II}(Y-V_I)F(Y(t-\tau)),
\end{align*}
\]
where \(X \) and \(Y \) represent the membrane potential of an excitatory and of an inhibitory neuron respectively, \(C_m = 1 \mu \text{F/cm}^2 \) is the specific membrane capacitance, \(g_L = 0.25 \text{ mS/cm}^2 \) is the leakage conductance and \(V_I = -60 \text{ mV} \) is the leakage potential. The values chosen for this model are in the range of values measured experimentally in a neuronal membrane (cf., for example, ref. [7]). \(g_{EE}, g_{EI}, g_{II} \) and \(g_{IH} \) are respectively the synaptic conductances for excitatory-to-excitatory (EE), inhibitory-to-excitatory (IE), excitatory-to-inhibitory (EI) and inhibitory-to-inhibitory (II) interactions. \(V_E = 50 \text{ mV} \) and \(V_I = -80 \text{ mV} \) are the equilibrium potentials for synaptic excitation and inhibition. Synaptic interaction is taken into account by the use of the transfer function
\[
F(V) = \frac{1}{1 + \exp[-\frac{1}{5}(V+25)]}.
\]
This sigmoidal function gives the output activity of the neuron as a function of its potential \(V \). For the most negative values of the potential, the neuron is silent and \(F \approx 0 \). Above the threshold value of \(V \approx 50 \text{ mV} \), the output activity of the neuron increases and saturates to a maximum value of \(F \approx 1 \) for higher potentials. The time delay due to signal propagation and synaptic transfer is \(\tau = 4 \text{ ms} \).

These equations can be derived from models describing the dynamics of the membrane potential of a network of excitatory and inhibitory neurons [8,9]. If one restricts the network to have uniform solutions, then eqs. (1) are obtained (cf. refs. [10,11]). Thus, this system can also be viewed as describing the uniform solutions of a network of excitatory and inhibitory neurons [8,9].

Renormalizing the conductances by \(C_m \) leads to the following set of parameters (in ms\(^{-1}\)):
\[
\begin{align*}
\Omega_1 &= g_{EE}/C_m, & \Omega_2 &= g_{IE}/C_m, & \Omega_3 &= g_{EI}/C_m & \text{and} & \Omega_4 &= g_{II}/C_m.
\end{align*}
\]
The values used in this paper are \(\Omega_2 = \Omega_3 = 5 \text{ ms}^{-1} \) and \(\Omega_4 = 0 \). \(\Omega_1 \) is the main parameter of the model. It is important to note that similar behavior is observed for a very wide range of these parameters and the values given here are therefore representative of the system.

As indicated by fig. 1, this model exhibits multiple steady states. The lower steady branch corresponds to the resting membrane potential and is around the value of \(V_I \). For higher values of \(\Omega_1 \), other fixed points appear. In this case the upper steady branch is stable whereas the intermediate branches are unstable (cf. fig. 1). It is to be noticed that the upper branch corresponds to a stable state where both neurons stay permanently above the threshold.

For the values of \(\{\Omega_1, ..., \Omega_4\} \) considered, the lower steady branch gives rise to limit cycle oscillations via a supercritical Hopf bifurcation (\(\Omega^H \) in fig. 1). We focus here on the complex oscillatory phenomena.

Fig. 1. Stability diagram of the system of interconnected neurons. The fixed points of the variable \(x \) are shown here as a function of the parameter \(\Omega_1 \). They were obtained numerically using a Newton-Raphson algorithm [14]. Linear stability analysis of these fixed points shows that limit cycle oscillations occur in the range of values between \(\Omega^H \) (Hopf bifurcation) and \(\Omega^H \) (infinite period bifurcation). The legends are: SFP = stable fixed point, UNP = unstable fixed point, FCL = stable limit cycle. The inset

which appear from an infinite period bifurcation (\(\Omega_2^f\) in fig. 1). As shown in fig. 1, a very similar diagram is seen for different values of the time delay.

Figure 2 shows the oscillating patterns seen at the approach of the point \(\Omega_2^f\). For increasing values of \(\Omega_1\), the limit cycle oscillations turn into bursting behavior.

We emphasize that the presence of the delay is necessary to observe this type of oscillations. Very similar behavior is observed for a very wide range of the parameters provided the delay is not too small, and the synaptic coefficients \(\Omega_2\) and \(\Omega_3\) are large enough. However, bursting oscillations disappear for time delays close to zero.

Figure 2 also shows that a bursting oscillation period is composed of an intermediate segment (the silent phase) and a burst of faster oscillatory behavior (the active phase). Very similar bursting oscillations have been observed in chemical systems [13].

A closer scrutiny of fig. 2 reveals that, during the approach to the critical point \(\Omega_2^f\), the period continuously increases together with the number of pseudo-cycles of the fast oscillation, while the intermediate segment remains essentially unchanged. At the critical point \(\Omega_2^f\), the oscillatory active phase lasts an infinite time, which leads us to assume the existence of a second limit cycle LC2 corresponding to the active phase fast oscillations. Since this limit cycle LC2 does not exist alone without the intermediate segment of the silent phase, we conclude that LC2 must be an unstable limit cycle of saddle type because trajectories like LC1 can enter the vicinity of LC2 before escaping from it. We now show that this behavior can be accounted for by the presence of a homoclinic tangency to the limit cycle LC2 as schematically illustrated in fig. 3.
least squares fitting is $\lambda = 0.1299 \pm 0.0014$ ms$^{-1}$
(other parameters are given in the caption of fig. 4).

If we refer to the scheme of the Poincaré section of the system (fig. 3),
then one can deduce that, close to the critical point, the successive iterates
follow the unstable direction of the limit cycle (indicated by U
in fig. 3a). These particular iterates correspond to
of the system is remarkably close to that obtained from period measurements using relation (2). The coincidence of these two values confirms that the bursting oscillations are based here on a homoclinic approach to an unstable limit cycle. Previously described mechanisms [6] shows that, here also, a “slow” oscillatory process is associated to the stable limit cycle LC1, whereas the unstable limit cycle LC2 is characterized by a faster time scale.

As a conclusion, we have described a novel type of bursting oscillations which appear in a model of coupled neurons with time delay. Neuronal bursting, lation characterizing the active phase of the bursting oscillation is not associated to a stable oscillating branch in the fast subsystem. It rather corresponds