We investigated the kinetic properties of the hyperpolarization-activated inward current (I_h) of thalamocortical (TC) neurons. Recently, it was shown that this current is characterized by different time constants of activation and inactivation, which was in apparent conflict with the single-exponential time course of the current. We introduce here a model of I_h, based on the cooperation of a slow and a fast activation variable and show that this kinetic scheme accounts for these apparently conflicting experimental data. We also report that following the combination of such a current with other currents seen in TC cells, one observes several types of oscillating behavior, similar to the slow oscillations and the spindle-like oscillations seen in vitro.

Keywords: Thalamus; Sleep; Lateral geniculate nucleus; Biophysical model; Hodgkin-Huxley formalism; Slow oscillations; Spindle-like oscillations; Low-threshold calcium

A model of the inward current I_h and its possible role in thalamocortical oscillations

A. Destexhe and A. Babloyantz

Université Libre de Bruxelles, CP 231–Campus Plaine, Boulevard du Triomphe, B-1050 Bruxelles, Belgium; 1 The Salk Institute, Computational Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA-92037, USA
\[\frac{dF}{dt} = \frac{(H_x(V) - F)}{\tau_f(V)} \]

Comparison between single and double precision results showed that single precision is sufficient for integration of equations 1-4.

All numerical integrations were performed using

\[\frac{dS}{dt} = \frac{(H_x(V) - S)}{\tau_f(V)} \]
cells. Moreover, for cat TC cells, spindle-like oscillations have also been found when enhancing I_{h}.

In this case, while increasing I_{h} strength, the following sequence of modes were observed: a hyperpolarized resting state when I_{h} is blocked, slow oscillations for weak values of I_{h}, spindle-like oscillations for higher values of I_{h}, and finally, a depolarized resting state for a further increase in the value of I_{h}. This sequence was reversed by gradually decreasing the strength of I_{h}.

A similar sequence of oscillatory modes can be seen in the model as the maximal conductance of I_{h} is decreased. As shown in Figure 2, for the highest values of g_{h}, the membrane lies in a depolarized resting state close to -60 mV. Decreasing g_{h} leads to spindle-like oscillations (intraspindle frequency of 10—14 Hz and a period of approximately 9 s). As g_{h} is decreased further, one observes oscillations of a lower frequency around 1.1 Hz. Finally, for the weakest values of g_{h}, the membrane switches to a hyperpolarized resting state, close to -80 mV.

FIG. 1. Simulation of voltage clamp protocols on the double activation model of I_{h}. Activation of I_{h} with an initial potential of -80 mV and the...
oscillating and resting states, as seen experimentally by the experiments of Soltesz et al.16 The transition between these modes is achieved by increasing the maximal conductance of I_v. The model therefore produces several modes, similar to those seen in TC cells.