Thalamocortical Assemblies
How ion channels, single neurons and large-scale networks organize sleep oscillations
Alain Destexhe & Terrence J. Sejnowski
Thalamocortical Assemblies
Monographs of the Physiological Society

Members of the Editorial Board

R. N. Lemon (Chairman), C. C. Michel, P. J. Harrison, N. B. Standen, R. E. J. Dyball

43. Dwain L. Eckberg and Peter Sleight, Human Baroreflexes in Health and Disease, 1992
44. Christopher L-H. Huang, Intramembrane Charge Movements in Striated Muscle, 1993
45. Robert Porter and Roger Lemon, Corticospinal Function and Voluntary Movement, 1993
46. M. de Burgh Daly, Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration, 1997
47. Platon Kostyuk, Plasticity in Nerve Cell function, 1998
Thalamocortical Assemblies
How Ion Channels, Single Neurons and Large-Scale Networks
Organize Sleep Oscillations

Alain Destexhe
Unité de Neuroscience Intégratives et Computationnelles, CNRS,
UPR-2191, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Département de Physiologie, Laval University,
Québec G1K 7P4, Canada

and

Terrence J. Sejnowski
Computational Neurobiology Laboratory,
The Howard Hughes Medical Institute,
The Salk Institute for Biological Studies,
10010 North Torrey Pines Road, La Jolla, California 92037, USA

Department of Biology, University of California San Diego,
La Jolla, California 92093, USA

OXFORD
UNIVERSITY PRESS
To Beatrice and Laurence, who helped us in many ways and for their forbearance with our sleep deprivation
Contents

1 Introduction
1.1 Brain rhythmicities
1.2 Early views on brain rhythmicity
1.3 Origin of brain rhythmicity
1.4 Identification of the key neuronal structures
1.5 Thalamocortical assemblies

2 Biophysical models of the membrane potential and ionic currents
2.1 Ionic bases of neuronal excitability
2.1.1 Membrane potential
2.1.2 Voltage-gated ion channels
2.1.3 The Hodgkin–Huxley model for action potentials
2.1.4 Biophysical bases for voltage dependence
2.2 Calcium-dependent ion channels
2.2.1 Intracellular calcium
2.2.2 Constant field equations
2.2.3 Calcium-activated channels
2.2.4 Oscillations with I_{Ca}
2.3 Markov models of voltage-dependent ion channels
2.3.1 Single-channel recordings
2.3.2 Markov kinetic models
2.4 Discussion
2.4.1 Hodgkin–Huxley models of ion channels
2.4.2 Markov models of ion channels
2.4.3 Applications to model single-cell and network behavior
2.5 Summary

3 Electrophysiological properties of thalamic relay neurons
3.1 The bursting properties of thalamic relay neurons
3.1.1 Experimental characterization of the rebound burst
3.1.2 Computational models of burst responses in TC cells
3.2 Oscillatory properties of thalamic relay cells
3.2.1 Experimental characterization of intrinsic oscillations
3.2.2 Models of oscillations in TC cells
3.3 Intrinsic waxing-and-waning oscillations in thalamic relay cells
5 Biophysical models of synaptic interactions

5.1 Transmitter release
5.1.1 Experimental characterization of neurotransmitter release
5.1.2 Kinetic models of neurotransmitter release
5.1.3 Simplified models of the release process
5.2 Models for different types of postsynaptic receptors
5.2.1 Markov models of neurotransmitter-gated channels
5.2.2 Simplified models of neurotransmitter-gated channels
5.2.3 AMPA/kainate receptors
5.2.4 NMDA receptors
5.2.5 GABA_A receptors
5.2.6 GABA_B receptors
5.2.7 Simplified models of second-messenger gated channels
5.2.8 Noradrenergic and serotonergic receptors
5.2.9 Synaptic summation

5.3 Detailed models of GABAergic synaptic transmission in thalamus, hippocampus and neocortex
5.3.1 Model of neurotransmitter spillover
5.3.2 Time course of GABA in the synaptic cleft
5.3.3 Time course of GABAergic currents
5.3.4 Stimulus intensity dependence of GABAergic currents
5.3.5 Slow IPSPs in neocortex

5.4 Discussion
5.4.1 Modeling synaptic interactions
5.4.2 Detailed models of GABAergic synaptic transmission and spillover of GABA

5.5 Summary

6 Spindle oscillations in thalamic circuits

6.1 Experimental characterization of sleep spindle oscillations
6.2 Models of rhythmicity in the isolated reticular nucleus
6.2.1 Model networks of RE cells
6.2.2 Oscillatory behavior in simple circuits with GABA_A synapses
6.2.3 Oscillatory behavior in two-dimensional networks with GABA_A synapses
6.2.4 Spatiotemporal dynamics of two-dimensional networks with GABA_A synapses
6.2.5 Oscillatory behavior in the presence of GABA_B synapses
6.2.6 Oscillations with depolarizing GABA_₄ synapses
6.3 Models of rhythmicity arising from thalamic relay–reticular interactions
 6.3.1 Model of the TC–RE oscillator
 6.3.2 Spindle oscillations in the simple TC–RE circuit
6.4 Why does the RE nucleus oscillate <i>in vivo</i> but not <i>in vitro</i>?
 6.4.1 Model of noradrenergic/serotonergic actions on RE cells
 6.4.2 Neuromodulatory control of network oscillations in the RE nucleus
6.5 Network model of spindle oscillations in ferret thalamic slices
 6.5.1 Networks of TC and RE cells
 6.5.2 Small circuits of thalamic reticular neurons
 6.5.3 Subharmonic bursting of TC cells
 6.5.4 Minimal circuit for spindle oscillations
 6.5.5 Oscillations in networks of TC and RE cells
 6.5.6 Spatiotemporal patterns of discharges
 6.5.7 Refractoriness of the network
6.6 Intrathalamic augmentation responses
 6.6.1 Model for the intrathalamic augmenting response
6.7 Discussion
 6.7.1 Spindle oscillations in the intact thalamus
 6.7.2 Oscillations in the isolated reticular nucleus
6.8 Summary

7 *Spindle oscillations in the thalamocortical system*
 7.1 Experimental characterization of spindle oscillations in the thalamocortical system
 7.1.1 Early studies
 7.1.2 The influence of corticothalamic projections
 7.1.3 Propagating patterns of oscillations <i>in vivo</i>
 7.2 A thalamocortical network model of spindle oscillations
 7.2.1 The thalamocortical network
 7.2.2 Inhibitory dominance in thalamocortical cells
 7.2.3 Inhibitory dominance is optimal for triggering thalamic oscillations
 7.2.4 Inhibitory dominance determines thalamic coherence
 7.2.5 Refractoriness of the corticothalamic network
 7.2.6 Refractoriness influences propagation
 7.2.7 Spontaneous cortical discharges control spatiotemporal coherence
 7.3 The large-scale synchrony of spindle oscillation during natural sleep
 7.3.1 Spatiotemporal analysis of spindle oscillations in the cortex
 7.3.2 Computational models of cortical excitability
Contents

7.3.3 Effect of enhancing the excitability of cortical pyramidal cells 271
7.3.4 Spatiotemporal coherence of simulated oscillations 275
7.3.5 Effects of enhancing the excitability of different cell types 277

7.4 Thalamocortical augmenting Responses 277
7.4.1 Thalamocortical augmenting 277
7.4.2 Augmenting responses in simple thalamocortical circuits 280
7.4.3 Augmenting responses in thalamocortical networks 280
7.4.4 Augmenting responses to cortical stimulation 282
7.4.5 Mechanisms underlying augmenting responses following cortical stimuli 284

7.5 Discussion 286
7.5.1 The coherence of spindle oscillations in the thalamocortical system 286

7.6 Summary 292

8 Thalamocortical mechanisms for spike-and-wave epileptic seizures 294
8.1 Experimental characterization of paroxysmal oscillations 294
8.1.1 Experimental models of absence seizures 294
8.1.2 Involvement of GABA_A receptors 298
8.2 Modeling the genesis of paroxysmal discharges in the thalamus 301
8.2.1 Early models 301
8.2.2 Models of the activation properties of GABA_A responses 305
8.2.3 Genesis of ~3 Hz oscillations in thalamic circuits 307
8.2.4 ~3 Hz paroxysmal oscillations in thalamic networks 309
8.2.5 Spatiotemporal properties of thalamic paroxysmal oscillations 313

8.3 Model of spike-and-wave oscillations in the thalamocortical system 313
8.3.1 The thalamocortical model 316
8.3.2 Possible role of GABA_A receptors in generating spike-and-wave field potentials 318
8.3.3 Intact thalamic circuits can be forced into ~3 Hz oscillations due to GABA_A receptors 320
8.3.4 Suppression of intrathalamic GABA_A inhibition does not generate spike-and-wave 322
8.3.5 Suppression of intracortical GABA_A inhibition leads to ~3 Hz spike-and-wave 325
8.3.6 A thalamocortical loop mechanism for ~3 Hz spike-and-wave oscillations 328
8.3.7 Determinants of 3 Hz spike-and-wave oscillations 329
8.3.8 ‘Fast’ 5–10 Hz spike-and-wave oscillations 332
8.4 Discussion 336
8.4.1 The importance of the nonlinear activation of \textit{GABA}_B responses 336
8.4.2 Paroxysmal discharges in the thalamus 337
8.4.3 3 Hz spike-and-wave in thalamocortical networks 339
8.4.4 Faster (5–10 Hz) spike-and-wave in thalamocortical networks 342
8.4.5 Predictions 343
8.4.6 Future directions 344
8.5 Summary 345

9 A physiological role for sleep oscillations 347
9.1 Impact of thalamic inputs on neocortical neurons 347
9.1.1 Experimental characterization of the thalamic input in neocortical pyramidal neurons 348
9.1.2 Computational models of thalamic inputs in neocortical pyramidal neurons 353
9.1.3 Modeling the consequences of spindles on neocortical pyramidal neurons 356
9.2 Oscillations during natural sleep and wakefulness 360
9.2.1 Spatiotemporal coherence of local field potentials during natural wake and sleep states 361
9.2.2 Correlations with unit discharges 363
9.2.3 Fast oscillations during slow-wave sleep 366
9.2.4 Origin of cortical slow waves 369
9.3 A possible function for sleep oscillations 377
9.3.1 Sleep oscillations as a trigger for plasticity 377
9.3.2 Slow oscillations 378
9.3.3 Network reorganization 380
9.4 A computational theory of sleep 381
9.4.1 Temporally asymmetric Hebbian plasticity 382
9.4.2 Thalamocortical assemblies 384
9.4.3 Sleep and memory consolidation 385
9.4.4 Reciprocal interactions between the hippocampus and the neocortex 387
9.4.5 Computational models of sleep 389
9.5 Summary 391

Appendix A: Ionic bases of the membrane potential 392
A.1 Water and phospholipid membranes 392
A.2 Establishing a membrane potential 394
A.3 Passive properties of neuronal membranes 396
A.3.1 Leak channels 396
A.3.2 Time constant 398
A.3.3 Input resistance 398
MONOGRAPHS OF THE PHYSIOLOGICAL SOCIETY

During sleep, the mammalian brain generates an orderly progression of low-frequency oscillations. The nature of these oscillations changes as the brain moves from deep sleep into slow sleep. Although widely measured and recorded, the underlying neural mechanisms involved and the purpose of these oscillations have remained unclear. However, as we learn more about the properties of neurons in the thalamus and cerebral cortex and their interconnections, it has become possible to suggest a role for these oscillations.

This book reviews the molecular components and gene mechanisms underlying these oscillations, including the properties of ion channels, synaptic receptors, and the patterns of interconnectivity among thalamic and cortical neurons. These properties have been used to build detailed computational models of thalamocortical assemblies and their collective behavior.

The precise experimental data collected has provided a foundation for the study of dynamic activity in the central nervous system and it is now possible to suggest a role for thalamocortical oscillations in memory consolidation.

The monograph is intended for neuroscientists, neurologists, psychologists, and other researchers interested in sleep and memory processes.