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Abstract

The central nervous system is subject to many different sources of noise, which have fasci-
nated researchers since the beginning of electrophysiological recordings. In cerebral cortex, the
largest amplitude noise source is the “synaptic noise”, which is dominant in intracellular record-
ings in vivo. The consequences of this background activity is a classic theme of modeling stud-
ies. In the last 20 years, this �eld tremendously progressedas the synaptic noise was measured
for the �rst time using quantitative methods. These measurements have allowed computational
models not only to be more realistic and closer to the biological data, but also to investigate the
consequences of synaptic noise in more quantitative terms,measurable in experiments. As a con-
sequence, the “high-conductance state” conferred by this intense activityin vivo could also be
replicated in neurons maintainedin vitro using dynamic-clamp techniques. In addition, mathe-
matical approaches of stochastic systems provided new methods to analyze synaptic noise and
obtain critical information such as the optimal conductance patterns leading to spike discharges.
It is only through such a combination of different disciplines, such as experiments, computational
models and theory, that we will be able to understand how neurons compute in such noisy states.
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1 Introduction

The central nervous system is subject to many different forms of noise, which have fascinated re-
searchers since the beginning of electrophysiological recordings. In cerebral cortex, the largest am-
plitude noise source is the “synaptic noise”, which is dominant in intracellular recordingsin vivo.
Indeed, one of the most striking characteristics of awake and attentive states is the highly complex
nature of cortical activity. Global measurements, such as the electroencephalogram (EEG) or local-
�eld potentials (LFPs), display low-amplitude and very irregular activity, so-called “desynchronized
EEG” (Steriade, 2003). This activity has very low spatiotemporal coherence between multiple sites
in cortex, which contrasts with the widespread synchronization in slow-wave sleep (Destexhe et al.,
1999). Local measurements, such as extracellular (unit activity) or intracellular recordings of single
neurons, also demonstrate very irregular spike discharge and high levels of �uctuations similar to
noise (Steriade et al., 2001), as shown in Figure 1. Multipleunit activity (Fig. 1A) shows that the �r-
ing is irregular and of low correlation between different cells, while intracellular recordings (Fig. 1B)
reveal that the membrane potential (Vm) is dominated by intense �uctuations (“noise”).

How neurons integrate synaptic inputs in such noisy conditions is a problem which was identi�ed
in early work on motoneurons (Barrett and Crill, 1974; Barrett, 1975), which was followed by studies
in Aplysia (Bryant and Segundo, 1976) and cerebral cortex (Holmes and Woody, 1989). This early
work motivated further studies using compartmental modelsin cortex (Bernander et al., 1991) and
cerebellum (Rapp et al., 1992; De Schutter and Bower, 1994).These studies pointed out that the
integrative properties of neurons can be drastically different in such noisy states. However, at the time,
no precise experimental measurements was available to characterize the noise sources in neurons.

How neurons integrate their inputs in such states, and more generally, how entire populations
of neurons represent and process information in such noisy states is still highly debated. In this
chapter, we will describe recent measurements and associated progress to characterize the nature and
the impact of this noisy activity. We will show that a series of major progress have been made in
the last 20 years, and that computational neuroscience has played a particularly important role in this
exploration.

2 Characterization of synaptic noise in vivo

A �rst major advance was that this amount of “noise” was characterized and measured for the �rst time
using quantitative methods. Figure 2 illustrates such measurements (Paré et al., 1998; Destexhe and
Paré, 1999). This quantitative characterization was doneusing the “up-states” of ketamine-xylazine
anesthesia, which display very similar network activity asthe awake brain (they were later measured
in awake animals; Rudolph et al., 2007). The experiments were designed such that the same cell
could be recorded before and after total suppression of network activity. A powerful blocker of
network activity (tetrodotoxin, TTX) was micro-perfused during the intracellular recordings, enabling
characterization of the membrane state before and after TTXinfusion (Fig. 2, top scheme). The
comparison between these two states included measuring themembrane potential (Fig. 2A), input
resistance (Fig. 2B) and voltage distributions (Fig. 2C). These experiments revealed that about 80%
of the membrane conductance is attributable to synaptic activity (Paré et al., 1998; Destexhe and Paré,
1999), demonstrating that neuronsin vivo operate in a “high-conductance state”.
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Figure 1: Highly complex and “noisy” cortical activity during wakefulness. A. Irregular �ring activity of 8 multi-
units shown at the same time as the LFP recorded in electrode 1(scheme on top). During wakefulness, the LFP is of low
amplitude and irregular activity (“desynchonized”) and unit activity is sustained and irregular (see magni�cation below; 20
times higher temporal resolution). B. Intracellular activity in the same brain region during wakefulness. Spiking activity
was sustained and irregular, while the membrane potential displayed intense �uctuations around a relatively depolarized
state (around -65 mV in this cell; see magni�cation below). Panel A modi�ed from Destexhe et al., 1999; Panel B
modi�ed from Steriade et al., 2001.

3 Detailed biophysical models of synaptic noise

Investigating the consequences of noisy background activity is a classic theme which started by stud-
ies in motoneurons (Barrett and Crill, 1974; Barrett, 1975)and followed by model studies of neurons
in cerebral cortex (Holmes and Woody, 1989; Bernander et al., 1991) and cerebellum (Rapp et al.,
1992; De Schutter and Bower, 1994). The measurements of synaptic background activity outlined
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Figure 2:Characterization of synaptic noise by suppression of network activity using micro-perfusion of tetrodotoxin
(TTX). Top: experimental setup; a micro-perfusion pipettewas used to infuse TTX into the cortex in vivo, at the same
time of the intracellular recording. Left panels: characterization of network states in vivo. Right panels: same mea-
surements after dialysis of TTX. The different measurements are the membrane potential (A), the averaged response to
hyperpolarizing pulses (B), and the voltage distribution (C). A-C modi�ed from Destexhe and Paré, 1999.

above (Paré et al., 1998) have allowed computational models not only to be more realistic and closer
to the biological data, but also to investigate the consequences of synaptic noise in more quantitative
terms. Figure 3 summarizes a �rst approach consisting of biophysically detailed models based on
morphologically accurate reconstructions of cortical pyramidal neurons, combined with realistic pat-
terns of synaptic input and intrinsic voltage-dependent conductances (see details and parameters in
Destexhe and Paré, 1999). These models could be tuned to reproduce all experimental measurements
(Fig. 3A-C).

Such detailed biophysical models have been used to investigate the consequences of synaptic
background activity in cortical neurons, starting with the�rst investigation of this kind by Bernander
et al. (1991). This study revealed that the presence of background activity, although at the time non-
constrained by experimental measurements, was able to change several features of the integrative
properties of the cell, such as coincidence detection.

Using models constrained from experiments, such as that of Fig. 3 enabled the derivation of
several interesting properties, which we enumerate here.

1. Enhanced responsiveness. The presence of background activity was found to markedly change
the cell's excitability, and produce a detectable responseto inputs that are normally subthreshold
(Hô and Destexhe, 2000). This prediction was veri�ed in dynamic-clamp experiments (see
Section 5 below).

2. Location-independence. The effectiveness of synaptic inputs becomes much less dependent on
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Figure 3:Detailed biophysical models of synaptic background activity in cortical pyramidal neurons. Top: scheme of
the model, based on a reconstructed cell morphology from catparietal cortex. The model can reproduce the main features
of in vivomeasurements (panels A-C arranged similarly as Fig. 2). Figure modi�ed from Destexhe et al., 2001.

their position in dendrites, as found in cerebellar (De Schutter and Bower, 1994) and cortical
neurons (Rudolph and Destexhe, 2003b), although based on very different mechanisms.

3. Different integrative mode. As initially predicted by Bernander et al. (1991), this impor-
tant property was indeed con�rmed with models constrained by experimental measurements
(Rudolph and Destexhe, 2003b).

4. Enhanced temporal processing. As a direct consequence of the “high-conductance state” of
the neurons under background activity, the faster membranetime constant allows the neuron
to perform �ner discrimination, which is essential for coincidence detection (Softky, 1994;
Rudolph and Destexhe, 2003b; Destexhe et al., 2003) or detecting brief changes of correlation
(Rudolph and Destexhe, 2001). The latter prediction was also veri�ed experimentally (Fellous
et al., 2003).

5. Modulation of intrinsic properties. It was found that in the presence of synaptic background
activity, the responsiveness of bursting neurons is strongly affected (Wolfart et al., 2005). This
aspect will be considered in more detail below.
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These properties have been summarized and detailed in different review papers and books (Des-
texhe et al., 2003; Destexhe, 2007; Haider and McCormick, 2009; Destexhe and Rudolph, 2011)
which should be consulted for more information.

4 Simpli�ed models of synaptic noise

A second major step was to obtain simpli�ed representationsthat capture the main properties of the
synaptic “noise”. This advance is important, because simple models have enabled real time applica-
tions such as the dynamic-clamp (see Section 5 below). But most importantly, simple models also
have enabled a number of mathematical applications, some ofwhich resulted in methods to analyze
experiments, as outlined in Sections 6 and 7. These approaches relied on a simpli�ed stochastic
model of synaptic noise, called the “point-conductance model” (Destexhe et al., 2001), and which
can be written as:

C
dV
dt

= � gL (V � EL) � ge(V � Ee) � gi (V � Ei) + Iext ; (1)

dge(t)
dt

= �
1
t e

[ge(t) � ge0] +

s
2s 2

e

t e
xe(t) ; (2)

dgi(t)
dt

= �
1
t i

[gi(t) � gi0] +

s
2s 2

i

t i
xi(t) ; (3)

whereC denotes the membrane capacitance,Iext a stimulation current,gL the leak conductance and
EL the leak reversal potential.ge(t) andgi(t) are stochastic excitatory and inhibitory conductances
with respective reversal potentialsEe andEi . The excitatory synaptic conductance is described by
Ornstein-Uhlenbeck (OU) stochastic processes (Eq. 2), where ge0 ands 2

e are, respectively, the mean
value and variance of the excitatory conductance,t e is the excitatory time constant, andxe(t) is a
Gaussian white noise source with zero mean and unit standarddeviation. The inhibitory conductance
gi(t) is described by an equivalent equation (Eq. 3) with parametersgi0, s 2

i , t i and noise sourcexi(t).
Note that all conductances are here expressed in absolute units (in nS) but a formulation in term of
conductance densities is also possible.

In many previous models, synaptic activity was modeled by a source of current noise in the neuron
(Tuckwell, 1988), and thus the membrane potential is equivalent to a stochastic process. In contrast, in
the point-conductance model, the conductances are the stochastic processes, and the Vm �uctuations
result from the combined action of two of such �uctuating conductances. This model is thus capable
of reproducing all features of the high-conductance state found in cortical neurons in vivo, such as
large-amplitude �uctuations, low input resistance and depolarized Vm (Fig. 4). In addition, it also
captures the correct power spectral structure of the synaptic conductances (see Destexhe et al., 2001).

5 Synaptic noise in dynamic-clamp

An elegant technique to investigate the effect of synaptic noise on neurons is to use the dynamic-
clamp technique (Robinson and Kawai, 1993; Sharp et al., 1993; for a recent review, see Destexhe
and Bal, 2009). This technique can be used to arti�cially reproduce stochastic synaptic activity by
injecting the corresponding computer-generated conductance in a living neuron (Reyes et al., 1996;
Jaeger and Bower, 1999; Gauck and Jaeger, 2000; Destexhe et al., 2001; Chance et al., 2002; Fellous
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Figure 4: Point conductance model of synaptic background activity incortical neurons. Top: scheme of the point
conductance model, where two stochastically-varying conductances determine the Vm �uctuations through their (multi-
plicative) interaction. This simpli�ed model reproduces the main features ofin vivo measurements (same arrangement of
panels A-C as in Fig. 2). Figure modi�ed from Destexhe et al.,2001.

et al., 2003; Mitchell and Silver, 2003; Prescott and Dekoninck, 2003; Shu et al., 2003). Apply-
ing this approach to cortical neurons revealed an importanteffect of the stochastic synaptic activity
on neuronal responsiveness (Destexhe et al., 2001; Chance et al., 2002; Mitchell and Silver, 2003;
Prescott and Dekoninck, 2003; Shu et al., 2003; Higgs et al.,2006), similar to computational model
predictions (Hô and Destexhe, 2000). Some of these properties are reminiscent of the “stochastic res-
onance” phenomenon, which is an optimal signal-to-noise ratio in nonlinear systems subject to noise,
and which was long studied by physicists (Wiesenfeld and Moss, 1995; Gammaitoni et al., 1998).

Figure 5 shows the “high-conductance state” conferred by intense synaptic activity, as replicated
in neurons maintainedin vitro using the dynamic-clamp technique. As for models, this technique
enables the experimentalist to reproduce (and modulate at will) a background activity with similar
properties as foundin vivo.

Perhaps the most unexpected property of synaptic noise was found when investigating the effect
of noise on thalamic neurons (Wolfart et al., 2005). These neurons are classically known to display
two distinct �ring modes, a single-spike (tonic) mode, and aburst mode at more hyperpolarized lev-
els (Llinas and Jahnsen, 1982). However, thalamic neurons are also known to receive large amounts
of synaptic noise through their numerous direct synaptic connections from descending corticothala-
mic �bers, and this activity accounts for about the half of the input resistance of thalamic neurons
(Contreras et al., 1996). Based on these measurements, the effect of synaptic noise was simulated
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Figure 5:Dynamic-clamp recreation of high-conductance states in neuronsin vitro. Top: scheme of the dynamic-clamp,
the point-conductance model is simulated and the excitatory and inhibitory conductances are injected in a living neuron
using dynamic-clamp. This technique enables obtaining states very similar toin vivomeasurements (similar arrangement
of panels as Fig. 2). Figure modi�ed from Destexhe et al., 2001.

using dynamic-clamp on thalamic neurons in slices, and remarkably, it was found that under such
in vivo–like conditions, the duality of �ring modes disappears because single spikes and bursts now
appear at all Vm levels (Wolfart et al., 2005). But more interestingly, if one calculates the full transfer
function of the neuron, the amount of spikes transmitted to cortex becomes independent of the Vm
level (Fig. 6). This property is due to the fact that for hyperpolarized Vm, the low-threshold Ca2+ cur-
rent generates more bursts, and thus “compensates” for hyperpolarization. This remarkable property
shows that both the intrinsic properties and synaptic noiseare necessary to understand the transfer
function of central neuronsin vivo.

6 Stochastic systems analysis of synaptic noise

Another consequence of the simplicity of the point-conductance model is that it enables mathemat-
ical approaches. In particular, if one could obtain an analytic expression of the steady-state voltage
distribution (such that shown in Fig. 2C1), �tting such an expression to experimental data could yield
estimates of conductances and other parameters of background activity. This idea was formulated for
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Figure 6:Dynamic-clamp investigation of the transfer function of thalamic neurons in vitro. A. Scheme of the dynamic-
clamp experiment, in which stochastic conductances are injected in the neuron. B. Effect of synaptic noise in thalamic
neurons. The conductance noise interacts with burst generation to generate transfer response curves that are roughly
independent on the Vm. Panel B modi�ed from Wolfart et al., 2005.

the �rst time less than 10 years ago (Rudolph and Destexhe, 2003a) and subsequently gave rise to a
method called the “VmD method” (Rudolph et al., 2004), whichwe outline here.

The method to obtain an analytical expression for the voltage distribution is to consider the point-
conductance model (Eqs. 1–3) and evaluate the probability density of �nding the system at a valueV
at timet, denotedr (V;t). The time evolution of this probability density is given by aFokker-Planck
equation (Risken, 1984), and at steady-state, the probability density gives the voltage-distribution
r (V). So obtaining an analytic estimate of this voltage distribution requires �nding the steady-state
solution of the Fokker-Planck equation for the system (Eqs.1–3). However, this system is nonlinear
due to the presence of conductances and their multiplicative effect on the membrane potential, so
the corresponding Fokker-Planck equation is not solvable,and one has to rely on approximations.
This problem was studied by several groups who proposed different approximations to this problem
(Rudolph and Destexhe, 2003a, 2005; Richardson, 2004; Lindner and Longtin, 2006; for a compara-
tive study, see Rudolph and Destexhe, 2006).

One of these expressions is invertible (Rudolph and Destexhe, 2003a, 2005), which enables one
to directly estimate the parameters (ge0, gi0, se, s i) from experimentally calculated Vm distributions.
This constitutes the basis of the VmD method (Rudolph et al.,2004).

One main assumption behind this method is that the conductances variations are Gaussian-distributed,
and thus this distribution can be described by the mean (ge0, gi0) and the standard deviations (se, s i)
for each conductance. We use the following expression for Vm �uctuations

r (V) � exp
�
�

(V � V̄)2

2s 2
V

�
;

whereV̄ is the average Vm andsV its standard deviation. This expression provides an excellent ap-
proximation of the Vm distributions obtained from models and experiments (Rudolph et al., 2004),
because the Vm distributions obtained experimentally show little asymmetry (for up-states and acti-
vated states; for speci�c examples, see Rudolph et al., 2004, 2005, 2007).

This Gaussian distribution can be inverted, which leads to expressions of the synaptic noise pa-
rameters as a function of the Vm measurements,̄V andsV . To extract the four parameters, means (ge0,
gi0) and standard deviations (se, s i), from the Vm requires to measure two Vm distributions obtained
at two different constant levels of injected current. In this case, the Gaussian expression (Eq. 6) of the
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two distributions gives two mean Vm values,V̄1 andV̄2, and two standard deviation values,sV1 and
sV2. The system can be solved for four unknowns, leading to expressions ofge0, gi0, se, s i from the
values ofV̄1, V̄2, sV1 andsV2 (for details, see Rudolph et al., 2004).

This method was tested using controlled conductance injection in neurons using the dynamic-
clamp technique, as shown in Fig. 7. In this experiment, cortical neurons were recorded in slices
displaying spontaneous “up-states” of activity. These up-states were analyzed by computing their Vm
distribution, which was then used to evaluate the synaptic conductance parameters according to the
VmD method. This estimate of conductances was then used to generate synthetic conductance noise
traces, which were injected in the same neuron during silentstates. The match between the original
Vm distribution with the one obtained synthetically demonstrated that the VmD method provides good
conductance estimates.

Figure 7: VmD method and test using dynamic-clamp experiments. A. VmDconductance estimation and test of
the estimates. Top left: spontaneous active network states(“up-states”) were recorded intracellularly in ferret visual
cortex slices at two different injected current levels (Iext1, Iext2). Top right: the Vm distributions (gray) were computed
from experimental data and used to estimate synaptic conductances using the VmD method (analytic expression of Vm
distribution shown by solid lines). Bottom right: histogram of the mean and standard deviation of excitatory and inhibitory
conductances obtained from the �tting procedure (gray). Bottom left: a dynamic-clamp protocol was used to inject
stochastic conductances consistent with these estimates,therefore recreating arti�cial up-states in the same neuron. B.
Example of natural and recreated up-states in the same cell as in A. This procedure recreated Vm activity similar to the
active state. Figure modi�ed from Rudolph et al., 2004.

The main advantage of the VmD method is that it provides a fullcharacterization of the stochastic
conductances. Like other “classic” methods of conductanceestimation (reviewed in Monier et al.,
2008), the VmD method provides estimates of the total (mean)level of excitatory and inhibitory con-
ductances (ge0, gi0). In addition, it also provides estimates of theconductance �uctuations, through
the standard deviation of conductances (se, s i). This information is not readily obtained by other
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methods but is important because it provides estimates of the respective contributions of excitation
and inhibition to the Vm �uctuations, and thus offers a quantitative characterization of the “synaptic
noise”.

Another advantage of the VmD method is that it does not require to record in voltage-clamp
mode, which considerably simpli�es the experimental protocols, as everything can be estimated from
recordings of the Vm activity (current-clamp). However, action potentials must be removed, because
the associated Na+ and K+ conductances can signi�cantly bias the VmD estimates, so the Vm distri-
butions must be estimated exclusively by accumulating periods of subthreshold activity in-between
spikes. Using such a procedure, the VmD method was applied tointracellular recordingsin vivo
during anesthetized states (Rudolph et al., 2005) and in awake cats (Rudolph et al., 2007). The latter
provided the �rst quantitative conductance estimates in awake animals.

7 Estimating the optimal conductance patterns leading to spikes
in “noisy” states

The estimation of conductance �uctuations by the VmD methodhad an important consequence: it
opened the route to experimentally characterize the in�uence of �uctuations on action potential gen-
eration. This was the object of a recent method to estimate the spike-triggered average (STA) conduc-
tance patterns from Vm recordings (Pospischil et al., 2007). This “STA method” is also based on the
point-conductance model, and requires the prior knowledgeof the parameters of mean excitatory and
inhibitory conductances (ge0, gi0) and their variances (se, s i), which can be provided by the VmD
method. Using this knowledge, one can use a maximum likelihood estimator to compute the STA
conductance patterns. Similar to the VmD method, the STA method was also tested using dynamic-
clamp experiments and was shown to provide accurate estimates (Pospischil et al., 2007; Piwkowska
et al., 2008).

Figure 8 illustrates STA estimates in a computational modelreproducing two extreme conditions
found experimentally. First, states where both excitatoryand inhibitory conductances are of relatively
low and comparable amplitude (“Equal conductance”, left panels in Fig. 8), similar to some mea-
surements (Shu et al., 2003; Haider et al., 2006). Second, cases where the inhibitory conductance
can be up to several-fold larger than the excitatory conductance (“Inhibition-dominated”; right pan-
els in Fig. 8), which was observed in other measurements in anesthetized (Borg-Graham et al, 1998;
Hirsch et al., 1998; Destexhe et al., 2003; Rudolph et al., 2005) or awake preparations (Rudolph et
al., 2007). These two extreme cases produce similar mean Vm and Vm �uctuations, but they predict
different patterns of conductance STA, as shown in Fig. 8B. In the “Equal conductance” condition,
the total conductance increases before the spike, and this increase is necessarily due to excitation. In
“Inhibition-dominated” neurons, the opposite pattern is seen: there is a decrease of total conductance
prior to the spike, and this decrease necessarily comes the decrease of inhibition before the spike.

To determine which conductance pattern is seen in cortical neuronsin vivo, we applied the STA
method to intracellular recordings in awake cats (Rudolph et al., 2007). From intracellular record-
ings of electrophysiologically identi�ed RS cells, we evaluated the STA of excitatory and inhibitory
conductances, as well as the total conductance preceding the spike for neurons recorded in awake
(Fig. 9A, top) or naturally sleeping (Fig. 9A, bottom) cats (see details in Rudolph et al., 2007). In
most cells tested (7 out of 10 cells in Awake, 6 out of 6 cells inslow-wave sleep and 2 out of 2 cells
in REM sleep), the total conductance drops before the spike,in yielded STAs qualitatively equivalent
to that of the model when inhibition is dominant (Fig. 8B, right panels).

Note that this pattern is opposite to what is expected from feed-forward inputs. A feed-forward
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drive would predict an increase of excitation closely associated to an increase of inhibition, as seen
in many instances of evoked responses during sensory processing (Borg-Graham et al., 1998; Monier
et al., 2003; Wehr and Zador, 2003; Wilent and Contreras, 2005). There is no way to account for
a concertedge increase andgi drop without invoking recurrent activity, except if the inputs evoked
a strong dis-inhibition, but this was so far not observed in conductance measurements. Indeed, this
pattern with inhibition drop was found in self-generated irregular states in networks of integrate-and-
�re neurons (Fig. 9B; see details in El Boustani et al., 2007). This constitutes direct evidence that most
spikes in neocortexin vivo are caused by recurrent (internal) activity, and not by evoked (external)
inputs.

8 Discussion

In this chapter, we have overviewed several recent developments of the exploration of the integrative
properties of central neurons in the presence of “noise”. This theme has been popular in modeling
studies, starting from seminal work (Barrett and Crill, 1974; Barrett, 1975; Bryant and Segundo,
1976; Holmes and Woody, 1989), which was followed by compartmental model studies (Bernander
et al., 1991; Rapp et al., 1992; De Schutter and Bower, 1994).In the last two decades, signi�cant
progress was made in several aspects of this problem.

The �rst aspect which we overviewed here is that background activity was measured quantitatively
for the �rst time in “activated” network statesin vivo (Paré et al., 1998). Based on these quantitative
measurements, constrained models could be built (Destexheand Paré, 1999) to investigate integra-
tive properties in realisticin vivo–like activity states. Consequences on dendritic integration, such
as coincidence detection and enhanced temporal processing, as predicted (Bernander et al., 1991;
Softky, 1994), were con�rmed (Rudolph and Destexhe, 2003b). New consequences were also found,
such as enhanced responsiveness (Hô and Destexhe, 2000) and location-independent synaptic ef�-
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Figure 9:Evidence for “Inhibition-dominated” states in wake and sleep states, as well as in network models. A. STA of
the excitatory, inhibitory and total conductances obtained from intracellular data of regular-spiking neurons in an awake
(top) and sleeping (slow-wave sleep Up states, bottom) cat.The estimated conductance time courses showed in both cases
a drop of the total conductance caused by a marked drop of inhibitory conductance within about 20 ms before the spike.
B. STA of conductances in a representative neuron in a network model displaying self-sustained asynchronous irregular
states. A 10,000-cell network of integrate-and-�re neurons with conductance-based synaptic interactions was used (see
details in El Boustani et al., 2007). Panel A modi�ed from Rudolph et al., 2007; Panel B modi�ed from El Boustani et
al., 2007.

cacy (Rudolph and Destexhe, 2003b). The �rst of these predictions was con�rmed by dynamic-clamp
experiments on cortical neurons (Destexhe et al., 2001; Chance et al., 2002; Fellous et al., 2003;
Mitchell and Silver, 2003; Prescott and Dekoninck, 2003; Shu et al., 2003; Higgs et al., 2006).

We reviewed another aspect that tremendously progressed, namely the formulation of simpli�ed
models that replicate thein vivo measurements, as well as important properties such as the typical
Lorentzian spectral structure of background activity. Thepoint-conductance model (Destexhe et al.,
2001) had many practical consequences, such as to enable dynamic-clamp. Indeed, many of the
aforementioned dynamic-clamp studies used the point-conductance model to recreatein vivo–like
activity states in neurons maintainedin vitro. In addition to con�rm model predictions, dynamic-
clamp experiments also took these concepts further and investigated important properties such as
gain modulation (Chance et al., 2002; Fellous et al., 2003; Mitchell and Silver, 2003; Prescott and
Dekoninck, 2003). An inverse form of gain modulation can also be observed (Fellous et al., 2003)
and may be explained by potassium conductances (Higgs et al., 2006). It was also found that the
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intrinsic properties of neurons combine with synaptic noise to yield unique responsiveness properties
(Wolfart et al., 2005).

It must be noted that although the point-conductance model was the �rst stochastic model of
�uctuating synaptic conductances injected in living neurons using dynamic-clamp, other models are
also possible. For example, models based on the convolutionof Poisson processes with exponential
synaptic waveforms (“shot noise”) have also been used (e.g., see Reyes et al., 1996; Jaeger and
Bower, 1999; Chance et al., 2002; Prescott and Dekoninck, 2003). However, it can be shown that
these models are in fact equivalent at high rates, as the point-conductance model can be obtained as a
limit case of a shot-noise process with exponential conductances (Destexhe and Rudolph, 2004).

An important consequence, speci�c to the point-conductance model, is that its mathematical sim-
plicity enabled formulation of a number of variants of the Fokker-Planck equation for the mem-
brane potential probability density (Rudolph and Destexhe, 2003a, 2005; Richardson, 2004; Lindner
and Longtin, 2006), which led to a method to estimate synaptic conductances from Vm recordings
(Rudolph et al., 2004). This “VmD method” decomposed the Vm �uctuations into excitatory and
inhibitory contributions, estimating their mean and variance. This method was successfully tested in
dynamic-clamp experiments (Rudolph et al., 2004) as well asin voltage-clamp (Greenhill and Jones,
2007; see also Ho et al., 2009). The most interesting aspect of the VmD method is that it provides
estimates of the variance of conductances or equivalently,conductance �uctuations. This type of es-
timate was made for cortical neurons during arti�cially activated brain states (Rudolph et al., 2005)
or in awake animals (Rudolph et al., 2007). The latter provided the �rst quantitative characterization
of synaptic conductances and their �uctuations in aroused animals.

Finally, this approach was extended to estimate dynamic properties related to action potential
initiation. Estimating the spike-triggered conductance patterns provides very important information
to determine which optimal conductance variations determine the “output” of the neuron, which is a
fundamental aspect of integrative properties. In models and dynamic-clamp experiments, we found
two extreme cases for generating action potentials, eitherthrough increase of excitation or through
decrease of inhibition. The �rst of these two modes is “classic”, as action potentials are evoked
by volleys of excitation. The second mode, however, is only seen in high-conductance states where
inhibition and inhibitory �uctuations are dominant. In this case, the majority of spikes are statistically
related to dis-inhibition, which plays a permissive role. Asimilar shaping role of inhibition was found
in cerebellar Purkinje cells (Jaeger and Bower, 1999) and deep cerebellar nuclei (Gauck and Jaeger,
2000), in both cases using dynamic-clamp experiments.

This problem was taken a step further recently by directly identifying this pattern in neurons
subject to natural network activityin vivo (Rudolph et al., 2007). If the information about synaptic
conductances and their �uctuations is available (for example following VmD estimates), one can
use maximum likelihood methods to evaluate the spike-triggered conductance patterns (Pospischil et
al., 2007). Applying such an approach to intracellular recordings of cortical neurons in awake and
naturally-sleeping animals revealed that the second mode (dis-inhibition evoked spikes) is seen in the
majority of neurons analyzed in wake and sleep states (Rudolph et al., 2007). It is interesting to note
that this type of conductance dynamics is opposite to the conductance patterns evoked by external
input, but could be replicated by models displaying self-generated activity (El Boustani et al., 2007).
This suggests that most spikes in awake animals are due to internal network activity, in agreement
with previous studies (Llinas and Paré, 1991; Fiser et al.,2004). This supports a dominant role of the
network statein vivo, with inhibition is a key player. Both aspects should be investigated by future
studies.

Thus, the last 20 years have seen a tremendous theoretical and experimental characterization of
the synaptic “noise”, and its consequences on neurons and networks. Computational models have
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played – and still continue to play – a pivotal role in this exploration.
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