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Abstract

The central nervous system is subject to many differentcesuof noise, which have fasci-
nated researchers since the beginning of electrophy$iallogecordings. In cerebral cortex, the
largest amplitude noise source is the “synaptic noise”ctviig dominant in intracellular record-
ingsin vivo. The consequences of this background activity is a clabsimé of modeling stud-
ies. In the last 20 years, this eld tremendously progressethe synaptic noise was measured
for the rst time using quantitative methods. These meas@s have allowed computational
models not only to be more realistic and closer to the biallgilata, but also to investigate the
consequences of synaptic noise in more quantitative tarmeasurable in experiments. As a con-
sequence, the “high-conductance state” conferred by titéhise activityin vivo could also be
replicated in neurons maintainéal vitro using dynamic-clamp techniques. In addition, mathe-
matical approaches of stochastic systems provided newodetio analyze synaptic noise and
obtain critical information such as the optimal conductapatterns leading to spike discharges.
It is only through such a combination of different discigé) such as experiments, computational
models and theory, that we will be able to understand howamsucompute in such noisy states.



1 Introduction

The central nervous system is subject to many different $oofmnoise, which have fascinated re-
searchers since the beginning of electrophysiologicalreogs. In cerebral cortex, the largest am-
plitude noise source is the “synaptic noise”, which is daaninin intracellular recordings vivo.
Indeed, one of the most striking characteristics of awakkaitentive states is the highly complex
nature of cortical activity. Global measurements, sucthasetectroencephalogram (EEG) or local-
eld potentials (LFPs), display low-amplitude and veryggular activity, so-called “desynchronized
EEG” (Steriade, 2003). This activity has very low spatiopemal coherence between multiple sites
in cortex, which contrasts with the widespread synchrdioran slow-wave sleep (Destexhe et al.,
1999). Local measurements, such as extracellular (uniiggtor intracellular recordings of single
neurons, also demonstrate very irregular spike dischangehaggh levels of uctuations similar to
noise (Steriade et al., 2001), as shown in Figure 1. Muluipli¢ activity (Fig. 1A) shows that the r-
ing is irregular and of low correlation between differenigenhile intracellular recordings (Fig. 1B)
reveal that the membrane potential{Ms dominated by intense uctuations (“noise”).

How neurons integrate synaptic inputs in such noisy cooltis a problem which was identi ed
in early work on motoneurons (Barrett and Crill, 1974; Btrr#975), which was followed by studies
in Aplysia (Bryant and Segundo, 1976) and cerebral corteddrttés and Woody, 1989). This early
work motivated further studies using compartmental modelsortex (Bernander et al., 1991) and
cerebellum (Rapp et al., 1992; De Schutter and Bower, 199#se studies pointed out that the
integrative properties of neurons can be drastically cBffiéin such noisy states. However, at the time,
no precise experimental measurements was available taatkare the noise sources in neurons.

How neurons integrate their inputs in such states, and memnerglly, how entire populations
of neurons represent and process information in such nesgssis still highly debated. In this
chapter, we will describe recent measurements and asso@eigress to characterize the nature and
the impact of this noisy activity. We will show that a seridsnmajor progress have been made in
the last 20 years, and that computational neuroscienceléwgsdoa particularly important role in this
exploration.

2 Characterization of synaptic noise in vivo

A rst major advance was that this amount of “noise” was cletegazed and measured for the rsttime
using quantitative methods. Figure 2 illustrates such oreasents (Paré et al., 1998; Destexhe and
Paré, 1999). This quantitative characterization was dneg the “up-states” of ketamine-xylazine
anesthesia, which display very similar network activityttess awake brain (they were later measured
in awake animals; Rudolph et al., 2007). The experiment&wesigned such that the same cell
could be recorded before and after total suppression of arktactivity. A powerful blocker of
network activity (tetrodotoxin, TTX) was micro-perfusedrthg the intracellular recordings, enabling
characterization of the membrane state before and after ififusion (Fig. 2, top scheme). The
comparison between these two states included measuringéh®rane potential (Fig. 2A), input
resistance (Fig. 2B) and voltage distributions (Fig. 2Q)eJe experiments revealed that about 80%
of the membrane conductance is attributable to synapiitgdiParé et al., 1998; Destexhe and Paré,
1999), demonstrating that neuransvivo operate in a “high-conductance state”.
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Figure 1: Highly complex and “noisy” cortical activity during wakefiess. A. Irregular ring activity of 8 multi-
units shown at the same time as the LFP recorded in electr¢sish&me on top). During wakefulness, the LFP is of low
amplitude and irregular activity (“desynchonized”) andt activity is sustained and irregular (see magni catiotdve 20
times higher temporal resolution). B. Intracellular aityivn the same brain region during wakefulness. Spikingvagt
was sustained and irregular, while the membrane poterigplayed intense uctuations around a relatively depaledi
state (around -65 mV in this cell; see magni cation below)anBl A modi ed from Destexhe et al., 1999; Panel B
modi ed from Steriade et al., 2001.

3 Detailed biophysical models of synaptic noise

Investigating the consequences of noisy background actsv/a classic theme which started by stud-
ies in motoneurons (Barrett and Crill, 1974; Barrett, 1951%) followed by model studies of neurons
in cerebral cortex (Holmes and Woody, 1989; Bernander £18B81) and cerebellum (Rapp et al.,
1992; De Schutter and Bower, 1994). The measurements opsgrmckground activity outlined
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Figure 2: Characterization of synaptic noise by suppression of netwotivity using micro-perfusion of tetrodotoxin
(TTX). Top: experimental setup; a micro-perfusion pip&ttes used to infuse TTX into the cortex in vivo, at the same
time of the intracellular recording. Left panels: charaeggion of network states in vivo. Right panels: same mea-
surements after dialysis of TTX. The different measuremant the membrane potential (A), the averaged response to
hyperpolarizing pulses (B), and the voltage distributiGj. A-C modi ed from Destexhe and Paré, 1999.

above (Paré et al., 1998) have allowed computational nsad®lonly to be more realistic and closer
to the biological data, but also to investigate the consece® of synaptic noise in more quantitative
terms. Figure 3 summarizes a rst approach consisting optiysically detailed models based on
morphologically accurate reconstructions of corticalgmgidal neurons, combined with realistic pat-
terns of synaptic input and intrinsic voltage-dependemtdcctances (see details and parameters in
Destexhe and Paré, 1999). These models could be tunedtmluse all experimental measurements
(Fig. 3A-C).

Such detailed biophysical models have been used to ine¢stihe consequences of synaptic
background activity in cortical neurons, starting with tret investigation of this kind by Bernander
et al. (1991). This study revealed that the presence of vaakd activity, although at the time non-
constrained by experimental measurements, was able t@elseveral features of the integrative
properties of the cell, such as coincidence detection.

Using models constrained from experiments, such as thaigof3enabled the derivation of
several interesting properties, which we enumerate here.

1. Enhanced responsivene3she presence of background activity was found to markelaiénge
the cell's excitability, and produce a detectable respomggouts that are normally subthreshold
(H6 and Destexhe, 2000). This prediction was veri ed in dymc-clamp experiments (see
Section 5 below).

2. Location-independencé he effectiveness of synaptic inputs becomes much lessndent on
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Figure 3: Detailed biophysical models of synaptic background astiwi cortical pyramidal neurons. Top: scheme of
the model, based on a reconstructed cell morphology fromparéttal cortex. The model can reproduce the main features
of in vivo measurements (panels A-C arranged similarly as Fig. 2urEimodi ed from Destexhe et al., 2001.

their position in dendrites, as found in cerebellar (De $emand Bower, 1994) and cortical
neurons (Rudolph and Destexhe, 2003b), although basedrpulifferent mechanisms.

3. Different integrative mode As initially predicted by Bernander et al. (1991), this ionp
tant property was indeed con rmed with models constraingdekperimental measurements
(Rudolph and Destexhe, 2003b).

4. Enhanced temporal processing\s a direct consequence of the “high-conductance state” of
the neurons under background activity, the faster memhtiareeconstant allows the neuron
to perform ner discrimination, which is essential for coidence detection (Softky, 1994;
Rudolph and Destexhe, 2003b; Destexhe et al., 2003) ortdegdwrief changes of correlation
(Rudolph and Destexhe, 2001). The latter prediction was\asi ed experimentally (Fellous
et al., 2003).

5. Modulation of intrinsic properties|t was found that in the presence of synaptic background
activity, the responsiveness of bursting neurons is styaaifected (Wolfart et al., 2005). This
aspect will be considered in more detail below.
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These properties have been summarized and detailed inettitfeeview papers and books (Des-
texhe et al., 2003; Destexhe, 2007; Haider and McCormick92@estexhe and Rudolph, 2011)
which should be consulted for more information.

4 Simpli ed models of synaptic noise

A second major step was to obtain simpli ed representatibas capture the main properties of the
synaptic “noise”. This advance is important, because smpbdels have enabled real time applica-
tions such as the dynamic-clamp (see Section 5 below). Bst mportantly, simple models also
have enabled a number of mathematical applications, som#ich resulted in methods to analyze
experiments, as outlined in Sections 6 and 7. These appsaefied on a simpli ed stochastic
model of synaptic noise, called the “point-conductance etiofDestexhe et al., 2001), and which
can be written as:
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whereC denotes the membrane capacitarigg,a stimulation currenty, the leak conductance and
E, the leak reversal potentiafie(t) andg;(t) are stochastic excitatory and inhibitory conductances
with respective reversal potentidts andE;. The excitatory synaptic conductance is described by
Ornstein-Uhlenbeck (OU) stochastic processes (Eq. 2)tendag ands? are, respectively, the mean
value and variance of the excitatory conductartgds the excitatory time constant, ang(t) is a
Gaussian white noise source with zero mean and unit staxéaidtion. The inhibitory conductance
gi(t) is described by an equivalent equation (Eq. 3) with pararagig siz, t; and noise source(t).
Note that all conductances are here expressed in absolii$e(imnS) but a formulation in term of
conductance densities is also possible.

In many previous models, synaptic activity was modeled byusice of current noise in the neuron
(Tuckwell, 1988), and thus the membrane potential is edgmtdo a stochastic process. In contrast, in
the point-conductance model, the conductances are thieastibc processes, and thg, Mictuations
result from the combined action of two of such uctuating datances. This model is thus capable
of reproducing all features of the high-conductance stat@d in cortical neurons in vivo, such as
large-amplitude uctuations, low input resistance andaepzed \, (Fig. 4). In addition, it also
captures the correct power spectral structure of the simemiductances (see Destexhe et al., 2001).

5 Synaptic noise in dynamic-clamp

An elegant technique to investigate the effect of synaptisaon neurons is to use the dynamic-
clamp technique (Robinson and Kawai, 1993; Sharp et al.3;1#8 a recent review, see Destexhe
and Bal, 2009). This technique can be used to arti ciallyrogjuce stochastic synaptic activity by
injecting the corresponding computer-generated conduaetan a living neuron (Reyes et al., 1996;
Jaeger and Bower, 1999; Gauck and Jaeger, 2000; Destexhe2€04 ; Chance et al., 2002; Fellous
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Figure 4: Point conductance model of synaptic background activitgartical neurons. Top: scheme of the point
conductance model, where two stochastically-varying cotahces determine then/uctuations through their (multi-
plicative) interaction. This simpli ed model reproducétmain features ah vivo measurements (same arrangement of
panels A-C as in Fig. 2). Figure modi ed from Destexhe et2001.

et al., 2003; Mitchell and Silver, 2003; Prescott and Dekokj 2003; Shu et al., 2003). Apply-
ing this approach to cortical neurons revealed an impogtatt of the stochastic synaptic activity
on neuronal responsiveness (Destexhe et al., 2001; Chamate 2002; Mitchell and Silver, 2003;
Prescott and Dekoninck, 2003; Shu et al., 2003; Higgs e2@06), similar to computational model
predictions (H0 and Destexhe, 2000). Some of these pliepante reminiscent of the “stochastic res-
onance” phenomenon, which is an optimal signal-to-noige nanonlinear systems subject to noise,
and which was long studied by physicists (Wiesenfeld anddyib895; Gammaitoni et al., 1998).

Figure 5 shows the “high-conductance state” conferred tBnge synaptic activity, as replicated
in neurons maintaineth vitro using the dynamic-clamp technique. As for models, this riegpie
enables the experimentalist to reproduce (and modulatellxavbackground activity with similar
properties as founuh vivo.

Perhaps the most unexpected property of synaptic noiseomasl fwvhen investigating the effect
of noise on thalamic neurons (Wolfart et al., 2005). Theseaes are classically known to display
two distinct ring modes, a single-spike (tonic) mode, anduast mode at more hyperpolarized lev-
els (Llinas and Jahnsen, 1982). However, thalamic neun@nalgo known to receive large amounts
of synaptic noise through their numerous direct synaptimeations from descending corticothala-
mic bers, and this activity accounts for about the half oétimput resistance of thalamic neurons
(Contreras et al., 1996). Based on these measurementdfabed synaptic noise was simulated
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Figure 5:Dynamic-clamp recreation of high-conductance statesimaresin vitro. Top: scheme of the dynamic-clamp,
the point-conductance model is simulated and the excitaod inhibitory conductances are injected in a living neuro
using dynamic-clamp. This technique enables obtainingstaery similar tan vivo measurements (similar arrangement
of panels as Fig. 2). Figure modi ed from Destexhe et al.,200

using dynamic-clamp on thalamic neurons in slices, and rieabdy, it was found that under such
in vivo-like conditions, the duality of ring modes disappears &ase single spikes and bursts now
appear at all W, levels (Wolfart et al., 2005). But more interestingly, ifeocalculates the full transfer
function of the neuron, the amount of spikes transmittedoibex becomes independent of thg, V
level (Fig. 6). This property is due to the fact that for hygarized \f,, the low-threshold Ca cur-
rent generates more bursts, and thus “compensates” forgpglpeization. This remarkable property
shows that both the intrinsic properties and synaptic narsenecessary to understand the transfer
function of central neurons vivo.

6 Stochastic systems analysis of synaptic noise

Another consequence of the simplicity of the point-condace model is that it enables mathemat-
ical approaches. In particular, if one could obtain an aialxpression of the steady-state voltage
distribution (such that shown in Fig. 2C1), tting such arpesssion to experimental data could yield
estimates of conductances and other parameters of bacidyeativity. This idea was formulated for
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the rst time less than 10 years ago (Rudolph and Destexh@3&0and subsequently gave rise to a
method called the “WYmD method” (Rudolph et al., 2004), whigh outline here.

The method to obtain an analytical expression for the veltdigtribution is to consider the point-
conductance model (Egs. 1-3) and evaluate the probabditgity of nding the system at a valié
at timet, denoted (V;t). The time evolution of this probability density is given byrakker-Planck
equation (Risken, 1984), and at steady-state, the protyaBdénsity gives the voltage-distribution
r (V). So obtaining an analytic estimate of this voltage distidurequires nding the steady-state
solution of the Fokker-Planck equation for the system (Bg8). However, this system is nonlinear
due to the presence of conductances and their multiplea&tfect on the membrane potential, so
the corresponding Fokker-Planck equation is not solvadié, one has to rely on approximations.
This problem was studied by several groups who proposeerdiit approximations to this problem
(Rudolph and Destexhe, 2003a, 2005; Richardson, 2004 nkinand Longtin, 2006; for a compara-
tive study, see Rudolph and Destexhe, 2006).

One of these expressions is invertible (Rudolph and Deste2®03a, 2005), which enables one
to directly estimate the parameteggs, Jio, Se, Si) from experimentally calculatedydistributions.
This constitutes the basis of the VmD method (Rudolph e2@D4).

One main assumption behind this method is that the condeesarariations are Gaussian-distributed,
and thus this distribution can be described by the mgay gio) and the standard deviationsg( s;)
for each conductance. We use the following expression fprié¢tuations

vV V)2

r(V) exp 23\%

whereV is the average ¥ andsy its standard deviation. This expression provides an excedtp-
proximation of the 4, distributions obtained from models and experiments (Rpideit al., 2004),
because the ¥ distributions obtained experimentally show little asyntpéfor up-states and acti-
vated states; for speci c examples, see Rudolph et al., 200@5, 2007).

This Gaussian distribution can be inverted, which leadsxpressions of the synaptic noise pa-
rameters as a function of thg\\measurement¥, andsy. To extract the four parameters, meags (
0io) and standard deviationsd, s;), from the \f,, requires to measure twoMdistributions obtained
at two different constant levels of injected current. Irstbase, the Gaussian expression (Eq. 6) of the
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two distributions gives two meanré./values,\71 and\72, and two standard deviation values,; and
Sv2. The system can be solved for four unknowns, leading to esas 0fJe, Jio, Se, Si from the
values oy, V,, sy1 andsy (for details, see Rudolph et al., 2004).

This method was tested using controlled conductance iojedd neurons using the dynamic-
clamp technique, as shown in Fig. 7. In this experiment,ic@rheurons were recorded in slices
displaying spontaneous “up-states” of activity. Thesestgies were analyzed by computing thejs V
distribution, which was then used to evaluate the synajtinclactance parameters according to the
VmD method. This estimate of conductances was then usechrgte synthetic conductance noise
traces, which were injected in the same neuron during ssietés. The match between the original
V n distribution with the one obtained synthetically demoaistd that the VmD method provides good
conductance estimates.
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Figure 7: vmD method and test using dynamic-clamp experiments. A. VooRductance estimation and test of
the estimates. Top left: spontaneous active network statpsstates”) were recorded intracellularly in ferret was
cortex slices at two different injected current levdlsd, lexp). Top right: the \, distributions (gray) were computed
from experimental data and used to estimate synaptic céances using the VmD method (analytic expression gf V
distribution shown by solid lines). Bottom right: histograf the mean and standard deviation of excitatory and itdipi
conductances obtained from the tting procedure (gray).tt@ua left: a dynamic-clamp protocol was used to inject
stochastic conductances consistent with these estinthtrgfore recreating arti cial up-states in the same neaurB.
Example of natural and recreated up-states in the samescillA This procedure recreatedy\activity similar to the
active state. Figure modi ed from Rudolph et al., 2004.

The main advantage of the VmD method is that it provides achdkracterization of the stochastic
conductances. Like other “classic” methods of conductastenation (reviewed in Monier et al.,
2008), the VmD method provides estimates of the total (mksve) of excitatory and inhibitory con-
ductancesdq, Gig). In addition, it also provides estimates of tb@enductance uctuationghrough
the standard deviation of conductancss, (s;). This information is not readily obtained by other
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methods but is important because it provides estimateseofetbpective contributions of excitation
and inhibition to the W, uctuations, and thus offers a quantitative characteraabf the “synaptic
noise”.

Another advantage of the VmD method is that it does not requarrecord in voltage-clamp
mode, which considerably simpli es the experimental poois, as everything can be estimated from
recordings of the ¥, activity (current-clamp). However, action potentials finois removed, because
the associated Naand K" conductances can signi cantly bias the VmD estimates, edAh distri-
butions must be estimated exclusively by accumulatingoplerof subthreshold activity in-between
spikes. Using such a procedure, the VmD method was applig@atricellular recordingsn vivo
during anesthetized states (Rudolph et al., 2005) and ikexaats (Rudolph et al., 2007). The latter
provided the rst quantitative conductance estimates iakevanimals.

7 Estimating the optimal conductance patterns leading to siges
in “noisy” states

The estimation of conductance uctuations by the VmD methad an important consequence: it
opened the route to experimentally characterize the incgenf uctuations on action potential gen-
eration. This was the object of a recent method to estimatsyitke-triggered average (STA) conduc-
tance patterns from \recordings (Pospischil et al., 2007). This “STA method”lsoébased on the
point-conductance model, and requires the prior knowleddgiee parameters of mean excitatory and
inhibitory conductancesyfo, gio) and their variancessg, sj), which can be provided by the VmD
method. Using this knowledge, one can use a maximum liketlhestimator to compute the STA
conductance patterns. Similar to the VmD method, the STAotktvas also tested using dynamic-
clamp experiments and was shown to provide accurate essnabspischil et al., 2007; Piwkowska
et al., 2008).

Figure 8 illustrates STA estimates in a computational moeigloducing two extreme conditions
found experimentally. First, states where both excitasmgy inhibitory conductances are of relatively
low and comparable amplitude (“Equal conductance”, lefigiain Fig. 8), similar to some mea-
surements (Shu et al., 2003; Haider et al., 2006). Secoms@scahere the inhibitory conductance
can be up to several-fold larger than the excitatory corahest (“Inhibition-dominated”; right pan-
els in Fig. 8), which was observed in other measurementsasthatized (Borg-Graham et al, 1998;
Hirsch et al., 1998; Destexhe et al., 2003; Rudolph et abD520r awake preparations (Rudolph et
al., 2007). These two extreme cases produce similar mgaand V, uctuations, but they predict
different patterns of conductance STA, as shown in Fig. 88he “Equal conductance” condition,
the total conductance increases before the spike, andhttrisase is necessarily due to excitation. In
“Inhibition-dominated” neurons, the opposite patternasrs. there is a decrease of total conductance
prior to the spike, and this decrease necessarily comestreake of inhibition before the spike.

To determine which conductance pattern is seen in corteatansin vivo, we applied the STA
method to intracellular recordings in awake cats (Rudolpal.e 2007). From intracellular record-
ings of electrophysiologically identi ed RS cells, we evated the STA of excitatory and inhibitory
conductances, as well as the total conductance precedengpike for neurons recorded in awake
(Fig. 9A, top) or naturally sleeping (Fig. 9A, bottom) case¢ details in Rudolph et al., 2007). In
most cells tested (7 out of 10 cells in Awake, 6 out of 6 cellslow-wave sleep and 2 out of 2 cells
in REM sleep), the total conductance drops before the spikeelded STAs qualitatively equivalent
to that of the model when inhibition is dominant (Fig. 8B frigpanels).

Note that this pattern is opposite to what is expected fromafi@rward inputs. A feed-forward
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Figure 8: Two patterns of conductances associated to generatingsspiknodel neurons. Two different “states” are
displayed, both leading to comparablg \ctuations. Left panels: “Equal conductance” patternerdge andg; are of
comparable amplitude and statistics. Right panels: “libit-dominated” pattern, whemgg is stronger than with equal
conductances, bup needs to be several-fold larger to maintain Yhieat a similar level. Age, gi andVy, activity. B.
Spike-triggered conductance patterns associated to &seh Bigure modi ed from Rudolph et al., 2007.

drive would predict an increase of excitation closely agded to an increase of inhibition, as seen
in many instances of evoked responses during sensory gingg8org-Graham et al., 1998; Monier
et al., 2003; Wehr and Zador, 2003; Wilent and Contrerasbp0Uhere is no way to account for
a concerted)e increase andj; drop without invoking recurrent activity, except if the ung evoked

a strong dis-inhibition, but this was so far not observedanductance measurements. Indeed, this
pattern with inhibition drop was found in self-generateégular states in networks of integrate-and-
re neurons (Fig. 9B; see details in El Boustani et al., 200#)is constitutes direct evidence that most
spikes in neocortem vivo are caused by recurrent (internal) activity, and not by edofexternal)
inputs.

8 Discussion

In this chapter, we have overviewed several recent devedofsof the exploration of the integrative
properties of central neurons in the presence of “noise’is Tieme has been popular in modeling
studies, starting from seminal work (Barrett and Crill, 49Barrett, 1975; Bryant and Segundo,
1976; Holmes and Woody, 1989), which was followed by comparttal model studies (Bernander
et al., 1991; Rapp et al., 1992; De Schutter and Bower, 198vhe last two decades, signi cant

progress was made in several aspects of this problem.

The rst aspect which we overviewed here is that backgrouwtistidy was measured quantitatively
for the rst time in “activated” network states vivo (Paré et al., 1998). Based on these quantitative
measurements, constrained models could be built (Destaxtid®are, 1999) to investigate integra-
tive properties in realistin vivo-like activity states. Consequences on dendritic intémyrasuch
as coincidence detection and enhanced temporal processnyedicted (Bernander et al., 1991,
Softky, 1994), were con rmed (Rudolph and Destexhe, 2008l&w consequences were also found,
such as enhanced responsiveness (H0 and Destexhe, 2@l@cation-independent synaptic ef -
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Figure 9:Evidence for “Inhibition-dominated” states in wake anceglstates, as well as in network models. A. STA of
the excitatory, inhibitory and total conductances obtdiftfem intracellular data of regular-spiking neurons in arake

(top) and sleeping (slow-wave sleep Up states, bottom)lded.estimated conductance time courses showed in both cases
a drop of the total conductance caused by a marked drop dfitnhi conductance within about 20 ms before the spike.
B. STA of conductances in a representative neuron in a nktmaodel displaying self-sustained asynchronous irregular
states. A 10,000-cell network of integrate-and- re newwavith conductance-based synaptic interactions was used (s
details in El Boustani et al., 2007). Panel A modi ed from Rlgh et al., 2007; Panel B modi ed from El Boustani et
al., 2007.

cacy (Rudolph and Destexhe, 2003b). The rst of these ptextis was con rmed by dynamic-clamp
experiments on cortical neurons (Destexhe et al., 2001n&hat al., 2002; Fellous et al., 2003;
Mitchell and Silver, 2003; Prescott and Dekoninck, 20033 8hal., 2003; Higgs et al., 2006).

We reviewed another aspect that tremendously progresaattin the formulation of simpli ed
models that replicate thi@ vivo measurements, as well as important properties such asplualty
Lorentzian spectral structure of background activity. poent-conductance model (Destexhe et al.,
2001) had many practical consequences, such as to enaldenttyolamp. Indeed, many of the
aforementioned dynamic-clamp studies used the pointuciadce model to recreate vivo-like
activity states in neurons maintainedvitro. In addition to con rm model predictions, dynamic-
clamp experiments also took these concepts further andtigated important properties such as
gain modulation (Chance et al., 2002; Fellous et al., 200B¢chéIl and Silver, 2003; Prescott and
Dekoninck, 2003). An inverse form of gain modulation carodie observed (Fellous et al., 2003)
and may be explained by potassium conductances (Higgs, éC4l6). It was also found that the
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intrinsic properties of neurons combine with synaptic adcsyield unique responsiveness properties
(Wolfart et al., 2005).

It must be noted that although the point-conductance modasl thre rst stochastic model of
uctuating synaptic conductances injected in living newsaising dynamic-clamp, other models are
also possible. For example, models based on the convolotiBoisson processes with exponential
synaptic waveforms (“shot noise”) have also been used, (seg Reyes et al., 1996; Jaeger and
Bower, 1999; Chance et al., 2002; Prescott and Dekonindd3)20However, it can be shown that
these models are in fact equivalent at high rates, as thé-ponductance model can be obtained as a
limit case of a shot-noise process with exponential corahgas (Destexhe and Rudolph, 2004).

An important consequence, speci ¢ to the point-conduatanodel, is that its mathematical sim-
plicity enabled formulation of a number of variants of thekker-Planck equation for the mem-
brane potential probability density (Rudolph and Deste20®3a, 2005; Richardson, 2004, Lindner
and Longtin, 2006), which led to a method to estimate synaminductances from ¥ recordings
(Rudolph et al., 2004). This “VmD method” decomposed thg Mctuations into excitatory and
inhibitory contributions, estimating their mean and vade. This method was successfully tested in
dynamic-clamp experiments (Rudolph et al., 2004) as weh asltage-clamp (Greenhill and Jones,
2007; see also Ho et al., 2009). The most interesting aspéloe &mD method is that it provides
estimates of the variance of conductances or equivalerahguctance uctuations. This type of es-
timate was made for cortical neurons during arti cially imated brain states (Rudolph et al., 2005)
or in awake animals (Rudolph et al., 2007). The latter predithe rst quantitative characterization
of synaptic conductances and their uctuations in arouseohals.

Finally, this approach was extended to estimate dynamipegsti@s related to action potential
initiation. Estimating the spike-triggered conductane#grns provides very important information
to determine which optimal conductance variations deteerthie “output” of the neuron, which is a
fundamental aspect of integrative properties. In modetsdymamic-clamp experiments, we found
two extreme cases for generating action potentials, eftireugh increase of excitation or through
decrease of inhibition. The rst of these two modes is “cl@§sas action potentials are evoked
by volleys of excitation. The second mode, however, is oensin high-conductance states where
inhibition and inhibitory uctuations are dominant. In thtase, the majority of spikes are statistically
related to dis-inhibition, which plays a permissive rolesifilar shaping role of inhibition was found
in cerebellar Purkinje cells (Jaeger and Bower, 1999) amqg derebellar nuclei (Gauck and Jaeger,
2000), in both cases using dynamic-clamp experiments.

This problem was taken a step further recently by directBntdying this pattern in neurons
subject to natural network activiiy vivo (Rudolph et al., 2007). If the information about synaptic
conductances and their uctuations is available (for exnipllowing VmD estimates), one can
use maximum likelihood methods to evaluate the spike-gtigd conductance patterns (Pospischil et
al., 2007). Applying such an approach to intracellular rdotgs of cortical neurons in awake and
naturally-sleeping animals revealed that the second nutider(hibition evoked spikes) is seen in the
majority of neurons analyzed in wake and sleep states (Radelal., 2007). It is interesting to note
that this type of conductance dynamics is opposite to thelectance patterns evoked by external
input, but could be replicated by models displaying seliggated activity (El Boustani et al., 2007).
This suggests that most spikes in awake animals are dueetmahtnetwork activity, in agreement
with previous studies (Llinas and Paré, 1991; Fiser eR@D4). This supports a dominant role of the
network staten vivo, with inhibition is a key player. Both aspects should be stigated by future
studies.

Thus, the last 20 years have seen a tremendous theorettcakperimental characterization of
the synaptic “noise”, and its consequences on neurons amiriks. Computational models have
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played — and still continue to play — a pivotal role in this lexption.
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