


a. b.

c. d.

e. f.

Figure 8: Firing patterns of the CAdEx model: (a) adaptation, (b) delay low-
frequency tonic spiking, (c) burst, (d) delayed burst, (e) acceleration, (f) irreg-
ular chaotic-like
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Cm [pF] EA [mV] EL [mV] Is [pA] VA [mV] ∆A [mV]
Adaptive spiking 200 -70 -60 200 -50 5
Tonic spiking 200 -70 -70 192 -45 5
Bursting 200 -60 -58 150 -45 1
Delayed burst 200 -70 -60 100 -45 2
Accelerated spiking 200 -70 -60 130 -60 -5
Chaotic-like spiking 200 -70 -58 90 -40 5

VR [mV] VT [mV] δgA [nS] ḡA [nS] gL [nS] τA [ms]
Adaptive spiking -55 -50 1 10 10 200
Tonic spiking -56 -50 0 2 10 40
Bursting -46 -50 1 10 10 200
Delayed burst -46 -50 1 1 12 100
Accelerated spiking -58 -48 0 6 10 300
Chaotic-like spiking -47 -50 1 10 10 25

Table 1: The parameters of CAdEx model for firing patterns shown in Fig.8

To measure irregularity of spiking we used the coefficient of variance of ISI:

Ir =
σISI

〈ISI〉
(7)

where 〈ISI〉 and σISI are the mean and the standard deviation of ISIs respectively.
According to this definition, Ir ∈ [0,∞), where Ir = 0 for regular tonic spiking.

Both subthreshold ḡA and post-spike δgA adaptation parameters affect adap-
tation index, see Fig.9a. This allows the model to reproduce wide range of A
index values observed in neurons.

The irregular spiking (like chaotic-like spiking and bursting) is especially
pronounced in the transition zone between slow and fast regular spiking regions,
see Fig.9b. On the phase diagram slow regular spiking corresponds to post-
spike reset occurring on the left side of the right branch of the V-nullcline,
and, consequently, leading to longer interspike intervals, while fast tonic spiking
corresponds to reset occurring on the right side, leading to fast subsequent spike.
In the transition zone alternations between resets on the left and right side of V-
nullcline can lead to highly irregular spiking (cf.chaotic-like Fig.8f) and bursting
Fig.8c and d).

7 Discussion

In this paper, we proposed a new integrate-and-fire model with two variables,
and which can produce a large repertoire of electrophysiological patterns while
still allowing for clear mathematical insights and for large scale simulations. This
CAdEx model is completely specified with twelve biophysical parameters, and
reproduces qualitatively similar pattern as the AdEx model (Naud et al., 2008),
because the gA nullcline may be considered as locally linear and approximates

15

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/842823doi: bioRxiv preprint first posted online Nov. 15, 2019; 

http://dx.doi.org/10.1101/842823


gA [nS]

g
A

gA [nS]

g
A

VR [mV]VR [mV]

g
A

g
A

Adaptation index Firing rate

Irregularity index Firing rate

(a)

(b)

Figure 9: Spike frequency adaptation and spiking irregularity in CAdEx model.
(a) Adaptation index A and corresponding firing rate as a function of maximal
subthreshold adaptation ḡA and post-spike adaptation δgA. (b) Irregularity
index Ir and corresponding firing rate as function of reset potential VR and
post-spike adaptation δgA.
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that of the AdEx model. While the dynamics of the CAdEx model is compara-
ble to the AdEx model for moderate input and firing, the CAdEx model does
not suffer from un-naturally strong hyperpolarization after prolonged periods
of strong firing. This can be very advantageous for modelling of highly syn-
chronized rhythms and firings, like slow-wave oscillations or epileptic seizures.
Moreover, the sigmoidal subthreshold adaptation function allows one to model
the dynamics of voltage dependent ion channels in more detail, while retain-
ing the overall computational simplicity. The sigmoidal form of the adaptation
function enriches the dynamics, allowing a wider repertoire of multi-stabilities.

However, our model has some limitations. First, the adaptation has the
form of a non-inactivating current (such as IM potassium current) which limits
the description of a class of inactivating ionic channels. It also includes only
one type of subthreshold adaptation. In comparison to AdEx model, the com-
putational cost of our model may be slightly higher due to the form of the
adaptation variable, and more specifically the introduction of an exponential
function. Also, as more parameters are introduced, more thorough dynamical
studies and explorations of the parameter space are needed.
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Appendix

Bifurcations analysis

Rheobase current

The derivative of function S(V ) is given by

S′(V ) = gL − gL exp

(
V − VT

∆T

)
+

ḡA

1 + exp
(
VA−V

∆A

) (8)

− 1

∆A

ḡAexp
(
VA−V

∆A

)
(

1 + exp
(
VA−V

∆A

))2 (EA − V )

The solution of the transcendental equation S′(V ) = 0 gives a location V ∗ of
a maximum of S(V ) function, and consequently a rheobase current IR = S(V ∗).

Local linearized dynamics around equilibria

The Jacobian of CAdEx system around equilibrium i, located at (V (i), g
(i)
A ), for

an input current Is has a form:

Li(Is) =


− gLC + gL

C exp
(
V (i)(Is)−VT

∆T

)
− g

(i)
A (Is)

C
EA−V (i)(Is)

C

ḡA
τA∆A

exp

(
VA−V (i)(Is)

∆A

)
(

1+exp

(
VA−V (i)(Is)

∆A

))2 − 1
τA

 (9)

The trace τi(Is) and the determinant ∆i(Is) of Jacobian are as follows:

τi(Is) = −gL
C

+
gL
C

exp

(
V (i)(Is)− VT

∆T

)
+
g

(i)
A (Is)

C
− 1

τA
(10)

∆i(Is) =
gL
τAC

− gL
τAC

exp

(
V (i)(Is)− VT

∆T

)
+
g

(i)
A (Is)

τAC
(11)

− ḡA(EA − V (i)(Is))

τAC∆A

exp
(
VA−V (i)(Is)

∆A

)
(

1 + exp
(
VA−V (i)(Is)

∆A

))2

From above equations:

∆i = − 1

τA
τi −

1

τ2
A

− ḡA(EA − V (i)(Is))

τAC∆A

exp
(
VA−V (i)(Is)

∆A

)
(

1 + exp
(
VA−V (i)(Is)

∆A

))2 (12)
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The eigenvalues of Jacobian matrix at fixed points are then given by:

λ12 =
τ ±
√
τ2 − 4∆

2
(13)

If eigenvalues are complex, i.e. τ2 − 4∆ < 0, then system oscillates around
equilibrium. The imaginary part of an eigenvalue is equal to angular frequency
of oscillation, i.e. Im(λ) = ω = 2πν. Consequently the frequency of oscillations
is given by:

ν =
1

4π

√
4∆− τ2 (14)

Conductance-based synapses

To describe the behavior of the system receiving synaptic input, as in Section
4 concerning Multi-stability, we used a conductance-based model of synaptic
inputs.

The synaptic input current to our model is given by the following equation:

Isyn = gE(EE − V )− gI(EI − V ) (15)

Where EE = 0 mV is the reversal potential of excitatory synapses and EI =
−80 mV is the reversal potential of inhibitory synapses. gE and gI , are re-
spectively excitatory and inhibitory conductances, which increase by quantity
QE = 4 nS and QI = 1.5 nS on each incoming spikes. The increment of con-
ductance is followed by exponential decrease according to equation:

dgE/I

dt
= −

gE/I

τsyn
(16)

where τsyn = 5 ms. The spikes trains are generated by Poissonian process with
firing rate modulated by Ornstein-Ulhenbeck stochastic process (Fourcaud &
Brunel, 2002).
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