A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons

Alain Destexhe, David A. McCormick and Terrence J. Sejnowski

Biophysical Journal 65: 2473-2477, 1993

PDF copy of the full paper


We investigated a simplified model of a thalamocortical cell and a reticular thalamic cell interconnected with excitatory and inhibitory synapses, based on Hodgkin-Huxley type kinetics. The intrinsic oscillatory properties of the model cells were similar to those observed from single cells in vitro. When synaptic interactions were included, spindle oscillations were observed consisting of sequences of rhythmic oscillations at 8-10 Hz separated by silent periods of 8-40 s. The model suggests that Ca2+ regulation of lh channels may be responsible for the waxing and waning of spindles and that the reticular cell shapes the 10-Hz rhythmicity. The model also predicts that the kinetics of gamma-aminobutyric acid inhibitory postsynaptic potentials as well as the intrinsic properties of reticular cells are critical in determining the frequency of spindle rhythmicity.

return to publication list
return to main page