Refractoriness accounts for variable spike burst responses in somatosensory cortex.

Bartosz Telenczuk, Richard Kempter, Gabriel Curio and Alain Destexhe

eNeuro e0173-17, 2017.

online version (open access)

Copy of the full paper (PDF)


Neurons in the primary somatosensory cortex (S1) respond to peripheral stimulation with synchronised bursts of spikes, which lock to the macroscopic 600 Hz EEG waves. The mechanism of burst generation and synchronisation in S1 is not yet understood. Using models of single-neuron responses fitted to unit recordings from macaque monkeys, we show that these synchronised bursts are the consequence of correlated synaptic inputs combined with a refractory mechanism. In the presence of noise these models reproduce also the observed trial-to-trial response variability, where individual bursts represent one of many stereotypical temporal spike patterns. When additional slower and global excitability fluctuations are introduced the single-neuron spike patterns are correlated with the population activity, as demonstrated in experimental data. The underlying biophysical mechanism of S1 responses involves thalamic inputs arriving through depressing synapses to cortical neurons in a high-conductance state. Our findings show that a simple feedforward processing of peripheral inputs could give rise to neuronal responses with non-trivial temporal and population statistics. We conclude that neural systems could use refractoriness to encode variable cortical states into stereotypical short-term spike patterns amenable to processing at neuronal time scales (tens of milliseconds).

return to publication list
return to main page